
(._A&&”\xl l-J--//

LA-IJR- 93-3173

Title:

Author(s):

Wbmhd (0,

Los Alamos
NATIONAL LAR1HA1ORY

FAST DATA PARALLEL POLYGON RENDERING

“-’-J ~ 7 [J
t.

G
:7-I

F. A. Ortega, and C, D. Hansen

suprcom~ting ’93

Portland, OR
Novembar 18, 1993

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Fast Data Parallel Polygon Rendering
.

Frank A. Ortega Charles D. Hansen
X-Division Numerical Laboratory Advanced Computing Laboratory
Los Alamos National Laboratory Los Alamos National Laboratory
Los Alamos, New Mexico 87545 Los Alamos, New Mexico 87545

fao6hnl.gov hansenoacl.lanl.gov

Abstract,

Thizpaper deacribea apami!el method forpolygonal rendering ona massively pamliel SIMD machine.
This method, hazed on a simple shading model, is taqeted for applications which require very fad
polygon rendering for extremely large sets of polygons such as is found in many scientific visualization
applications, The algorithms described in this paper are incorpomted into a library of 9D gmphics
routines written for the Connection Machine. The routines am implemented on both the CM-ZOOand
the CM-5. This libmry enables a acientid to display $D shaded polygons directly jhm a pamllel machine
without the need to tmnamit huge amounts of data to a pod-processing rendering system,

1 Introduction

In recent years, masoively parallel processors (MPPII) have proven to be a valuable tool for performing
,\cientific computation. The memory syntems on this type of computer are far greater than those
f(und on traditional vector supercomputers. As a result, scientists who utilize theoe MPPs can execute
their three dimensional oimu’ation models with a much finer grid resolution than previously possible,
These extremely large grid sizes prove both to be a blessing and a curse, The finer grids allows for
better simulation of the underlying physics. However, the finer grids also cause u data explouion when
vimm!izmtion and analysis we applied to them, A fully populated 64K CM-200 has 8 Gigabyteo of
available memory, A 1024 node CM-5 contains 32 Gigabytes of physical memory. While it is true that
time-nteps in current eimulationo don’t utilize the entire memory syutems of these machines, it is not
uncommon for a dataeet from a single time-step in a dynamic simulation to be in excess of several
Gigabytes.

Geometry provides an excellent representation of simulations in the visualization process, Some
scientific simulations contain explicit geometry, For example, material interface boundaries may be
explicitly repr~oented, For emulations which do not contain explicit geometry, there are a plethora
of visualization techniques which generate geometry M an intermediate representation: isrmtrfacen,
particb, cphweo, vectors, Icoru, ate, In oome cum much am sparm data sets, geotnetry extraction
proves to be a compremion techniql:e without information loos. However, it is more typiral for geometric
extraction techniques to generate lar~er amount~ of data than i~ present in the origins.] data set [1],

one proven analytical technique for ocientlfic visual!zatlon is the generation of isonurfaces, TWO
m)mmcin methods for visualizing ieomtrfacee are volumetric rrmdering with a upeciflc opacity map and
the extraction of 3D contours [2, 3]. Volumetric technique directly render the datamt into an image,

The rendering process, especially for large non-uniform datasets, can be quite time consuming [4]. This
poses a problem if the viewing angle is not known a priori and needs to be determined interactively.
Contouring techniques, on the other hand, extract a geometric representation of the specified contour(s).
Typically, these are in the form of polygons. An advantage of this class of techniques is that view
direction can be changed interactively by rendering the polygons on a workstation with dedicated
hardware such as a Silicon Graphics Incorporated Onyx- RE2.

Recent research results have shown that 3D contours can be efficiently extracted at interactive rates
from large dynamic datasets on massively parallel processors [1]. These techniques can generate over
1,24 million polygons for each time-step of a dynamic simulation with a grid size of only 2563,1 These
large polygon sets impede interactive visualization on machines with dedicated graphics hardware in
two ways: the amount of local-area network traffic and the total number of polygons throughput for the
dedicated graphics hardware. In the simplest case (disregarding color information), each vertex of each
polygon consists of 3 floating point locations and 3 floating point normal positions or 24 bytes/vertex,
With 250000 polygons (assuming triangles), this is 18Mbytes per time-step. On an ethernet, best-case
is 14.4 seconds and average-case is much worst. Obviously, the amount of data overloads the network
capacity, Additionally, 250000 polygons is at the limit of disjoint polygons/second which state of the
art graphics engines can render.

One solution would be to move the entire dataset over to the workstation and generate the isosurfaces
locally utilizing optimization techniques such as spatial decomposition. Another similar solution would
be to analyze the raw data set with a commercially available visualization tool such as AVS, Explorer,
etc. In addition to network transport issues, the problem with both of these solutions is that the size of
the dataset overwhelms the workstation. The raw data can he over 128Mbytes per time step, In addition
to the network problems previously mentioned, our experience is that data sets of this magnitude cause
the workstation to page excessively with memory page faults when generating the isosurface. While it
is true that environments such as AVS are being ported to MPPs, it has been our experience that the
geometry component of these environments is not supported on the MPP but is still utilized cm the
workstation, The necessitates the transport of data, albeit filtered data, to the workstation,

A more appropriate solution would be to rende, the geometry on the MPP where the data already
exists, This is completely compatible with the previously described MPP isosurfacing techniqum and
utilizes the power of the mass,;ely parallel computer to generate an image, AS we will show, image
generation time is much less than direct volume rendering and network traffic is limited to the iinage size
rather than the data size, Additionally, this model extends the uuefulnesu of visualization environments
such as AVS or Explorer since images are transferred to a workstation rather t h~n fuU, or reduced,
datasets which still require further processing, Another benefit of this approach is the capability of
directly calling rendering functions from the running computational model, Thiu a.llown not only for
simulation monitoring/steering but also has proven to be an extremely useful tool in the debugging
procem,

2 Related Work

An increasing number of parallel polygonal rendering algorithms have been rlcvolopcd, The main strat.
egy hau been to perform a pmdlelization in two stages: man conversion and mnterization, This strategy
folluws the gross functionality which is implemented in most hardware graphicu pipelirles, The etandard
,....—.—=,—--.—.=m..-. ..—..--— .. -_ ..—. .-

I(;utrFRt]yl~h~sin“o~~tjn~i~ere~● Imf~eC18tBBFt,‘1’ypicn}lynimulntionn on nn MPl) mwhilwUIIPgrid f?nol~ltion~lPWdO

t1fh12$l

Figure 1: Standard Graphics Pipeline

graphics pipeline is shown m figure 1. Polygons are transformed from world space to screen space, clip-
ping to the screen is performed, polygons are scan converted, hidden surface elimination is performed+
Lighting can be applied either to the vertices before scan conversion, Gouraud shading, or at each pixel,
Phong shading.

Scott Whitman approached the problem of polygonal rendering on a shared memory massively parallel
processor; the BBN TC-2000 [5]. He spiits the standard graphics pipeiine into three stages: front-end,
rasterization, and back.end. In the front-end stage, the polygons are read into the system, transformed,
back-face culled, ciipped to the screen, and etored in ~hared memory. When the polygons are ~tored in
shared memory, a bucketization is performed to determine in which tiles the polygon iies, The bounding
box is used as the determinate. The raaterization phaae is similar to the standard graphics pipeline.
Polygons are scan converted, shaded, z-buffered, and finished scan lines are stored in a virtuai frame
buffer, The back-end writes the virtual frame buffer to the actual frame buffer. Whitman explores
many different t il.ing schemes but the L7sic parallel rendering foilows the steps outlined,

Thomas Crockett and Tobiaa Orloff implemented a standard scan-line conversion aigorithm on a
distrib ‘,edmemory system, INTEL iPSC/860, using message passing [6]. They approached the problem
by combming the first three stagss of the standard graphics pipeline and then splitting the render process
into two distinct otep~: splitting polygons into trapezoids and raaterization of transformed trapezoids,
They evenly distributed the polygons to ail procemoro and also even divided the image space into equally
sized horifiontai strips. Thus, their algorithm achieves both object and pixel pwileiismi The algorithm
alternate” between splitting trianglcw into trapcmku and raoterization,

Crow, Demos, Hardy, McLaughin and Simt utiihed a connection machine, CM02, to develop and
implement a photorealhtic renderer [7]. Their goai wan to provide very high quality rendering for one
of the film production houses in Hoi.iywoodt Since they were working on a SIMD machine, they chote
to program their algorithm in a data pmd.iel manner. They split the traditional polygonal rendering
pipeilne into fours etagec: tran~formn, clipping, oc~n convection and shading. Rather than foliowing
earner approachs on the CM-2, they amigned each verticee to a processor for appiying transforms. The
transformation matricies were paesed one after the other and appiied to the vmtexesi Cllpping was
done by aauigning one polygon to each procemor, Scan conversion was uimilariy handled. Shading waa
handled by am~igninga pixei to each processor, Their algorithm wao effective for hundretis of thou~andc
of poiygonu with compiex photo realhtic rendering featureu,

3 Parallel Programming Models

Architecturally, MPPs fall into two classes of machines: MIMD and SIh4D/SPMD. Similarly, there are
two programming models for parallelism which are expioited in massively parallel systems: execution
parallelism and data parallelism.

The execution parallel model divides a task up into a number of subtasks that can run concurrently.
For example, one could assign each object to be rendered to a processor. Each of these tasks can execute
concurrently and independent ly, It is not necessary for the tasks to execute in lockstep. Typically, there
is some synchronization barrier which synchronizes these independent tasks for the next step in the
process such as hidden-surface removal. Since each of the tasks execute independently, this model maps
welJ onto MIMI) architectures such as the CM-5 from Thinking Machines, Inc. [8] and the Paragon
XP/S from Intel Supercomputers, Inc. [9].

In the data parallel model the same operation is pwformed on all the selected data elements, For
example given an array of numbers, a constant could be added to each number. In the data parallel
model this operation would logically occur simultaneously on each element of the array. Actual hardware
may or may not perform this operation simultaneously on all selected data elements. This would depend
oil whether or not enough physical processors exist for each data element. In the case where there is
more data than processors, each physical processor is given a number of data elements upon which
it operates. Each of these data elements is considered a virtual processor, The concept of a virtual
processor allows one to treat the program as if there were a physical processor per data item, This model
maps well onto SIMD/SPMD architectures such as the CM-200 and CM-!i2 from Thinking Machines,
Inc.[10], the MP1 from MasPar Computer Corp. [11], and the Pixar Image Computer [12].

It has been recognized that for some problems the data parailel model is somewhat easier to program
than the execution parallel model. Modern scientific compilers, rmch as Fortran 90 and C*, take advan-
tage of the data parallel model in their language constructs. Furthermore, it has been shown that data
parallel programs can achieve good speed up on MIMD architectures [131.

4 A Data Parailel Renderer

The choice to employ the data parallel programming model for the polygonal rendering algorithm was
made for several reasons. Our computing facilities include several Connection Machines from Thinking
Machines. While the CM-5 at our site is a MIMD MPP, the multiple CM-2OOsare strictly SIMD MPPs,
It was our desire to develop an algorithm which would be portable to both machines, Secondly, the
scientific mpplicationb which run on them MPPM utilize CMFortrari an their primary language, Eaae of
use was a high priority so we wanted to develop an algorithm suite which would integrate well with
existing applicatirm, Lastly, we want~d a rendering environment which would take advantage of the
CM/AVS viaudization r)oftware on the CM-5 yet perform rendering in near rind-time, Since the current
version of CM/AVS dies cm the worktitation to perform rendering, performtmce aufi’ers for large data
setc due to the poor responoe time seen with network traffic,

The idea behind the data parallel renderer is to maximize the number of (Jpcratirms occurring in
parallel while minimizing communication. To accomplish this, it is advnntageouo to be careful about
data layout,

The algorithm employs the standard ~raphicn pipeline previously deocribed with rmme modi!icationo,
The clipping stage in poetponeti until later in the pipeline, The basic slvpu ure M f[dlows:

. -. ...—--------..- .=.,,.... . .. - .,
~’1’heCM.6 cm wtudly he ;)rogrammed with ?ither model, ‘1’ht Itun ‘rime Syst?m hrin nupport which r~unm the

muchine to run s- a HPMDMPP,

1. transform the polygons according to interactive controls (rotations, translation and scaling)

2. transform the polygons from world space to screen space

3. shade the vertices

4. scan convert the polygons

5. clip against the viewport

6. perform hidden surface elimination

The first three steps operate on vertices while the fourth step operates on polygons and then scan-
Lines. The last two steps operate on pixels. In order to maximize operations occurring in parallel,
we want to layout the vertex and polygon information in a data parallel manner. Following that, the
scanlines should be laid out similarly. Finally, we need to operate on the pixels in parallel.

To accomplish the first steps, the polygon vertex data is stored in three arrays: X, Y, Z components.
This data, for all polygons, is spread across available processors such that the vertices for a single
polygon lie within a processor. The color data for a polygon also lies within the same processor. When
the transformations are performed, the vertex data for all the polygons is transformed simultaneously.

Next, shading is performed for each polygon. In this implementation, we are optimizing for speed,
Therefore, we perform simple Gouraud shading. More advanced shading techniques would be easy
to implement, Again, since the polygon vertices are data parallel, the shading for the polygons are
performed simultaneously+

To save time and maximize the parallelism across polygons, a modified scan line conversion algorithm
was used [14], This aigorit hm assumes that the polygonal set consists of large numbers of small polygons,
We have found this is a valid assumption since the target application of this renderer is scientific data
particularly data derived from very large computational models. Typical polygonal set sizes can range
from 100,000 to millions of polygons [1]. This algorithm takes advantage of the fact that each polygon
haa relatively few scan lines passing through it compared with the number of scan iineo in the image.

This step iterates over the maximum number of titan lines through any polygon. Since scan conversion
is concurrently executed for all polygons, the largest number of scan lines necessary to process the entire
set of polygons in maximum number of scan lines spanning any polygon, This is, of course, the polygon
with the maximum image. opace height in Y, At the initiation of thin otep, the first scan line within every
polygon is processed simultaneously. AOthe number of IIcan line~ processed approaches tho maximum,
fewer polygono will be processed since some polygons will have fewer scan lines paining through them
than others,

We ntart the scan-conversion process by finding any intersections that the scmn line makes with each
of the polygon sides. There must be at least two interoectiono but, depending on the polygon shape,
there may be many intersections. In order to process a general polygon shape, the polygon scan line
intersections are sorted in ascending x order and grouped into line end pairs+ The even-odd rule in then
used to select the segments that are imide the polygon[15]. At this stage, the end points and color data
for the segments are gathered into a data mtructure ouch that the utart and end points m spread across
the processors in a data parallel manner. This utilhes generalised router communication A buffer is
formed of the segment end-pointn, The buffer holds the segmento until a sufficiently large number iu
gothered, The buffering of the uegments is performed in order to maximizo the number of segments
ti~at will be broken down into individual pixein. Recall that as the algorithm progresoen there are fewer
poiygono that contain a ncan iinc thus it is pomibie that fewer ~egments will be generated each paoo,

At this point, each processor contains a start and end point for a segment. The pixels wiil also be
contained in a data parallel array which spreads the pixels across all processors. Processing the lines
to pixels in parallel requires a loop over the number of pixels in the x direction of the longest line. The
first pixels from all the lines are processed, then the second, etc. The x, y and z values for the pixels
are interpolated from the line ends. Any pixels that lie outside the viewport are clipped. Since the
polygon scan lines are processed in parallel, there is a good possibility that many of the segments will
generate pixels wit h the same image location. The Connection Machine can not handle these” collisions”
correctly with standard interprocessor communications, The generalized data router must be used in
conjunct ion wit h a sendmax combiner [16]. This utility uses the router for fast communications but it
presented another problem: the utility can only work with one sending array at a time, and the color
value for the pixel needs to be stored in the image array for the pixel which has the maximum z value.
This problem was solved by combining the z wdues and the color value into a double precision array
before the zbuffer compare, These are the values saved into the zbuffer. Thus, ~fter all the polygons
have been processed, the image data must be extracted from the zbuffer data before displaying the
image,

5 Graphics Library Features

The algorithm and its components described in this paper have been built into a 3D graphics library
which can be linked with any program. The library can process arbitrarily complex polygons. These
polygons can be rasterized into flat shaded images or Gouraud shaded images, More advanced Lghting
models would be simple to add to the rendering routines, In addition, the polygons can be processed
into wireframe or wireframe with hiddm line removal images. Unshaded color contour images of polygon
vertex data can also be created, And finally, z-buffered points and Lines can be generated,

The routi -,es in the 3D graphics library are written in CMFmtran and only contain the rendering
process up until display of the resulting frame, Thus, both the CM-200 and the CM-5 can compile
the same source code, At the time the library was written, C* was not yet available on the CM-5.
on the CM-2OO, C* uses a transposed I%yout, called fieldwise. Since most of the scientific simulations
that use the 3D graphics library routines are written in CM Fortran, the routines enable the data to
stay in the sl.icewise data model on the CM-200, For the CM-200, this is a nice performance feature
since transposing from slicewise to fieldwise, or visa-versa, can be time consuming and adversely effects
performance. Thin is not a problem on the CM.5,

There is a utility routine in the library that extracts an image array from the zbuffer array, The
array is a CM integer array with the first element representing a color value for the top left pixel in the
window. This format is consistent with Xl 1R4 images and can then be displayed with available display
software such as *Raster m CMX11,

The shading algorithm in the library supports 15 shades of up to 15 ctdors, The color model is
designed for eight color planes or the PneudoColor video class[17], The library expects indices 30
through 255 of the color table to provide the correct shading for 15 colors. There is a utility routine
that will generate the correct color table frrim 15 user defined colors. ‘1’hclighting morid i~ quite simple
uning parallel white rays norrnnl to the window,

6 Experiments

Figure 2: Image of oil Well Perforator with 355,948 Small Polygons

rendering, Table 1 shows the times for rendering a data set with small polygons on the CM-200. Table 4
shows the times for rendering the same data set on the CM-5, Table 2 shows the times for rendering a
data set with large polygons while Table 3 shows the times for rendering the same data set on the CM-5.
T’hedata set with small polygons fits mr assumption that geometrv generated from smentific data on
massively parallel computers wdl typically be composed of many small polygons (poivgons which have
few scan lines passing through them). The data set with large polygons violates this assumption and

the times are given to show the effect, On the CM-2OO, experiments were run with partition sizes of
16K, 32K and 64K. On the CM-5, experiments vr.e run with partition sizes of 32, 64, 128, 256, and
512 nodes, Figure 2 shows the results of rendering a data set generated from a hydro=riynamics code
running on the CM-200 and the CM-5.

As can be seen, the times shown for the data set containing large polygons are an order of magnitude
slower cm both the CM-200 and the CM-5. This is because there were polygons which covered over
3/4 of the image thereby lengthening the serial portion of the algorithm, As the size of the polygons
increases, the polygon raaterizing speed decreases due to the iterative ioopII over the maximum polygon
height and th~ maximum scan line size. However, since this was shown as a degenerate case, we will
focus on the times for the small polvgm:t, (IN a 64K CM.200 partition, rendering speeds of over 600,000

polygons per second were achieved. These are disjoint polygons and we have found this to be three
timen the speed of our SGI 380/VGX whose publhhed rendering times are over one million meshed
polygons per second, lIowever, the rendering speed is dramatically reduced when the polygons to be
rendered are not in cache and the polygons are disjoint rather than mernhed. on n 512 partition of the
(~M-5, rendering speeds of close to one million poivgons per wcond werr rvcordrd, l’his v~ceeds t}lc
speed of current state d’ the art (iedicated graphics hardware,

Times Polygons/second
16K 32K 64K 16K 32K 64K

1.894 1.04 0.571 120,532 219,507 399,803
1.637 0.848 0.482 139,455 269,207 473,626
1.162 0.625 0.:35 196,461 365260 681,A56

Table 1: Rendering of Small Polygons on CM-200

Times Polygono/second
16K 32K 64K 16K 32K 64K

22.094 15.005 b.~74 9,866 14,527 25,423
10.015 11.855 6.834 12,100 18,J87 31,896

I 10.548 6.789 4.039 20,665 32,108 53,969

Table2: Rendering of Large Polygons on CM-200

.——
Times

- 128 a

Polygono/second
32 64 128 256 512 32~~’

!T7m 4.754 1,482 0.796 0.4(33 39,660 ‘48,020 154,040 286,794 493,062
3.402 2.877 0.966 I 0s498 0.302 67,104 79,349 236,322 458,409 755,920
2,476 1.048 0.550 I 0.401 0.236 92,200 217,832 415,069 569,296 967,322..

Table 3: Rendering of Small Polygons on CM-S

‘. :k12EElEzzT??rLEl32 64
.-—

.__L . ‘;! :!?Pg3’Y

37,326 20,169 12,488 8,466 6,220
‘30,684 16,034 9,758 0,393 4,717
p,261 9,3s3 5,643 3,604 2,590 12,628 23,306 39,325 60,651 84,163-.—. .—. ——

‘1’able4: Rendering of [,argc l’~dygunnon CM-5

Speed

16

14

12

10

Up 8

6

4

2

0
0 32 64 128 256 512

Procassorm

Figure 3: CM-6 Gpeed up

Speed up

4

3

2

1

0
0 16 32 64

Proaeesors

Figure4: CM-2000peedup

Figure 3 shows the speedup of the algorithm run on the CM-5 while Figure 4 shows the speedup
of the algorithm run on the CM-200. The speedup curves are relative to the implementation on the
smallest partition available for each of the MPPs. While neither of the speedups were linear, the graphs
show that near linear speedup for the data set with small polygons was achieved. The data set with
large polygons exhibited worst speedup due to the iterations serially performed,

7 Conclusions

This paper described a parallel method of polygon scan conversion allows the viwdization of large 3D
simulations directly from the SIMD computer. This allows scientists to evaluate the sim~ation as it
is running or shortly thereafter without the need to transfer huge amounts of data from a massively
parallel comput~r to a graphics workstation. Performance data was provided that showed the method
can out perform high-end commercially available graphicr workstations although it requires tremendous
resources.

8 Acknowledgements

We wish to thank John Fowler of Los Alamos National Laboratory for encouragement and assistance
with this paper. We would also like to thank Harold Trease of Los Alamos National Laboratory for help
with some CMFortran issues. The Advanced Computing Laboratory (ACL) at Los Alamos National
Laboratory generously provided computing iron and tremendous assistance with timing runs, David
Rich of the ACL was particularly stellar with the generosity of his time.

References

[i] C. Hansen and P. Hinker. Massively parallel isosurface extraction. In Proceedings oj Visualization
’92, pages 77-83, 1992.

[2] Mark Levoy. Efficient ray tracing of volume data. ACM Transactions of Computer Graphics, 9(3),
July 1990.

[3] W. Lorensen and H Cline. A high resolution 3d surface construction algorithm, In Computer
Gruphics, volume 21, pages 163-169, 1987,

[4] Todd Elvim. A survey of algorithms for volume visualization. Computer Gmphics Quarterly, 26(3),
Auguot 1992.

[6] Scott Whitman. Multiproceaaor Methods for Computer Gmphics Rendering. Jones and Bartlett,
Boston, 1992,

[6] T, Crockett and T. Orloff A parallel rendering algorithm for mimd architectures, Technical Report
91-3, NASA Langley Research Centw, 1991,

[7] F, Crow et al, 3d image synthesis on the connection machine, In SICGRAPH Course Notes;
Pamilel Prvceuuing and Advanced Architectures in Computer Gmphica, pages 107-129, 1989,

[8{ Thinking Machines (;urpnration. The connection machine CM.ti technical summary, 1991,

[9] Intel Corporation. Paragon XP/S product overview, 1991.

[10] Thinking Machines Corporation. Connection machine CM-200 series technical summary, 1991,

[11] MaaPar Computer Corporation. MP-1 family data-parallel computers, 1990.

[12] A, Levinthal and T. Porter. Chap - a SIMD graphics processor. Computer Gmphics, 18(3), July
1984.

[13] P. Hatcher et al. Architecture independent scientific programming in dataparllel c: Three case
studies, In %xeedinga of Supercomputing ’91, pages 208-217, 1991.

[14] John D, Fowler. A reduced set scan line algorithm. internal document, Los Alamos National
Laboratroy,

[15] Oliver Jones. Introduction to the X Window System. ?rentis Hall, Englewood Cliffs, New Jersey,
198S.

[16] Thinking Machines Corporation. Cm fortran user’s guide, 1991,

[1.7] Adrian Nye. .Wib Progtcrowning Manual, O’Reilly and Associates, Inc., Sebastapol, California,
1990,

